

2014-05-22_	_001.xad						Page 2 of 15
Assay Class: Data Path:	High Sensitivity DNA Assay C:\ bioanalyzer\2100 expert\Data'	\2014-05-22\201	14-05-2	2_001.xad	Created: Modified:		/2014 1:32:27 PM /2014 2:13:50 PM
Electrophore	esis File Run Summary (Chip Su	mmary)					
Sample Name	Sample Comment	Rest. Digest	Status	Observation	Result Lab	el	Result Color
sample 1 sample 2 sample 3 sample 4 sample 5 sample 6 sample 7 sample 8 sample 9 9RECO 9RECO Ladder			* * * * * * * * * * * * *				

Chip Lot #

Reagent Kit Lot #

Chip Comments :

Assay Class:High Sensitivity DNA AssayData Path:C:\... bioanalyzer\2100 expert\Data\2014-05-22\2014-05-22_001.xad

Electrophoresis Assay Details

General Analysis Settings

Number of Available Sample and Ladder Wells (Max.) : 12 Minimum Visible Range [s] : 32 Maximum Visible Range [s] : 138 Start Analysis Time Range [s] : 137.5 Ladder Concentration [pg/µl] : 1950 Uses Standard Area for Ladder Fragments Lower Marker Concentration [pg/µl] : 125 Upper Marker Concentration [pg/µl] : 75 Used Upper Marker for Quantitation Standard Curve Fit is Point to Point Show Data Aligned to Lower and Upper Marker

Integrator Settings

Integration Start Time [s] : 33.05 Integration End Time [s] : 137 Slope Threshold : 0.8 Height Threshold [FU] : 5 Area Threshold : 0.1 Width Threshold [s] : 0.6 Baseline Plateau [s] : 0.5

Filter Settings

Filter Width [s] : 0.5 Polynomial Order : 4

Ladder

Ladder Peak	Size	Area
1	35	160
2	50	210
3	100	208
4	150	221
5	200	242
6	300	270
7	400	305
8	500	306
9	600	336
10	700	321
11	1000	366
12	2000	413
13	3000	411
14	7000	400
15	10380	214

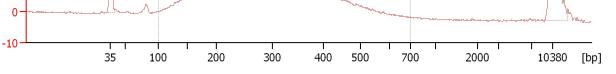
Created: 5/22/2014 1:32:27 PM Modified: 5/22/2014 2:13:50 PM

	_					5
Assay Class: Data Path:	High Sensit	ivity DNA Assay alvzer\2100 expert\Da	ata\2014-05-22\2014-05-22	2 001 xad	Created: Modified:	5/22/2014 1:32:27 PM 5/22/2014 2:13:50 PM
	rogram Sumi				riodifica.	5/22/2011 2:15:50 111
Liecciopiiei	ogram Sum	indi y				
			sample 1			
[FU]		1			10380	
70-	,				10	
	ŝ				,	
60-					l l	
50-						
100						
40-						
30 -						
50						
20-			and the work of the transmission of the second seco		++	
10			and a start of the			
10-		and the second	and a second		1	
0	- have	and management		where and a second second	manun Mun	
	35	100 200	300 400 500	700 2000	10380 [bp	1
	55	100 200	500 100 500	700 2000	10200 [bb	
Overall Resu	ults for sampl	le 1 : <u>sample 1</u>				
Number of pea	aks found:	0	Corr. Area 1:	723.3		
Noise:		0.2				
Peak table f	or sample 1	: <u>sample 1</u>				
Peak	Size [bp]	Conc. [pg/µl]	Molarity [pmol/l]	Observations		
1	35	125.00	5,411.3	Lower Marker		

1 2	 35 10, 		25.00 5.00	5,411.3 10.9	3		er Marker er Marker
Region	table fo	or sample 1 :	sample 1				
From [bp]		p] Average Size [bp]	Molarity [pmol/l]	Conc. [pg/µl]	Co Corr. lor Area	% of Total	Size distribution in CV [%]
93	702	326	5,984.8	1,059.00	723.3	97	34.3

2014-05-22_001.xad

Page 4 of 15


2014-05-22_	_001.xad			Page 5 of 15
Assay Class: Data Path:		rt\Data\2014-05-22\2014-05-22_001.xad	d Created: Modified:	5/22/2014 1:32:27 PM 5/22/2014 2:13:50 PM
Electropher	ogram Summary Continue	a		
		sample 2		
[FU]_ 60 - 50 - 40 - 30 - 20 - 10 -	35		10380	
-10			······································	
Overall Resu Number of pea	35 100 20 I lts for sample 2 : <u>samp</u> ks found: 0	<u>le 2</u>	2000 10380 [b 469.3	[q

Peak ta	able fo	r sample 2 :	sample 2				
Peak	S	ize [bp]	Conc. [pg/µl]	Mola	rity [pmol/l]	Ob	servations
1 2	◀ 3!№ 10	5 0,380	125.00 75.00	5,411 10.9	.3		wer Marker per Marker
Region table for sample 2 : <u>sample 2</u>							
From [bp] 95	To [! 624	pp] Average Siz [bp] 312	Molarity [pmol/l] 4,398.3	Conc. [pg/µl] 770.52	Co Corr. lor Area 469.3	% of Total 96	Size distribution in CV [%] 31.2

0.2

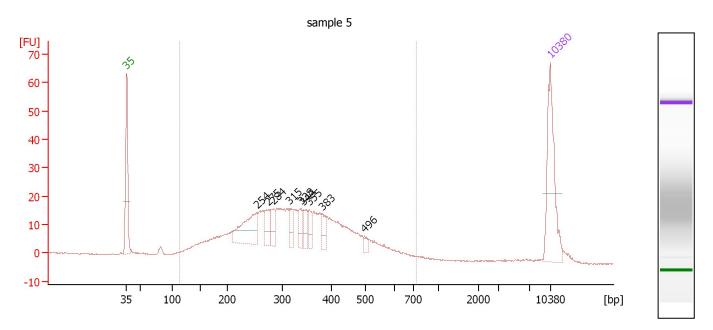
Noise:

	5/22/2014 1:32:27 PM 5/22/2014 2:13:50 PM
sample 3	
[FU]	
60 - 35	
50 -	
40 -	
30 -	
20 -	

Overall	Res	ults fo	or sample 3	3:	<u>sample 3</u>				
Number o	of pea	aks fou	und:	0		Corr. A	Area 1:	40	61.7
Noise:				0.2					
Peak tal	ble f	for sa	mple 3:	1	sample 3				
Peak		Size	-	Cor	ic. [pg/µl]	Molar	ity [pmol/l]	Ob	servations
1	€	35		125	.00	5,411.	3	Low	ver Marker
2	8	10,38	0	75.0	00	10.9		Upp	oer Marker
Region t	tabl	e for s	sample 3:	1	sample 3				
From [bp] 100	То 700		Average Siz [bp] 305	e	Molarity [pmol/l] 4,568.7	Conc. [pg/μl] 753.01	Co Corr. lor Area 461.7	% of Total 96	Size distribution in CV [%] 35.0

_001.xad			Page 7 of 15
	\2014-05-22\2014-05-22_001.xad	Created: Modified:	5/22/2014 1:32:27 PM 5/22/2014 2:13:50 PM
ogram Summary Continued			
	sample 4		
35		1922	
	High Sensitivity DNA Assay C:\ bioanalyzer\2100 expert\Data ogram Summary Continued	High Sensitivity DNA Assay C:\ bioanalyzer\2100 expert\Data\2014-05-22\2014-05-22_001.xad ogram Summary Continued sample 4	High Sensitivity DNA Assay C:\ bioanalyzer\2100 expert\Data\2014-05-22\2014-05-22_001.xad Created: Modified: Sample 4

20 - 10 - 0			and the state of the	ram - manda Jun	and Markov and a sea	free and the second	mune		Man	mun.
	35	100	200	1 300	400	500	700	2000	10380	[bp]

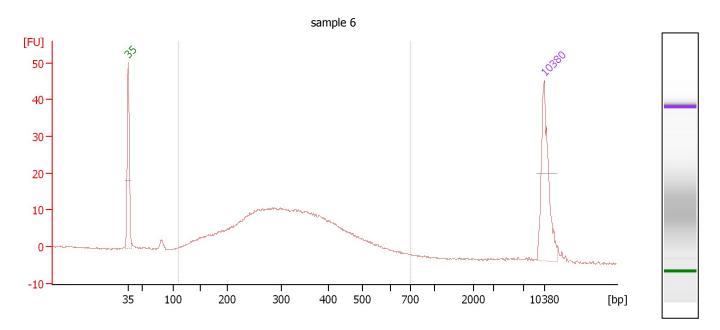

Overa	ll Re	sults for sample	e4: <u>sample4</u>	ŀ			
Numbe	er of p	eaks found:	1	Corr.	Area 1:	2	177.7
Noise:			0.2				
Peak t	table	for sample 4 :	sample 4				
Peak		Size [bp]	Conc. [pg/µl]	Mola	rity [pmol/l]	Ob	oservations
1	-	35	125.00	5,411.	.3	Lo	wer Marker
2		10,122	48.99	7.3			
3		10,380	75.00	10.9		Up	per Marker
Regio	n tab	le for sample 4	: <u>sample 4</u>				
From [bp] 93		o [bp] Average \$ [bp] 59 333	Size Molarity [pmol/l] 7,725.6	Conc. [pg/µl] 1,383.29	Co Corr. lor Area	% of Total 91	Size distribution in CV [%] 35.9

30 -

Created: Modified:

High Sensitivity DNA Assay C:\... bioanalyzer\2100 expert\Data\2014-05-22\2014-05-22_001.xad Assay Class: Data Path:

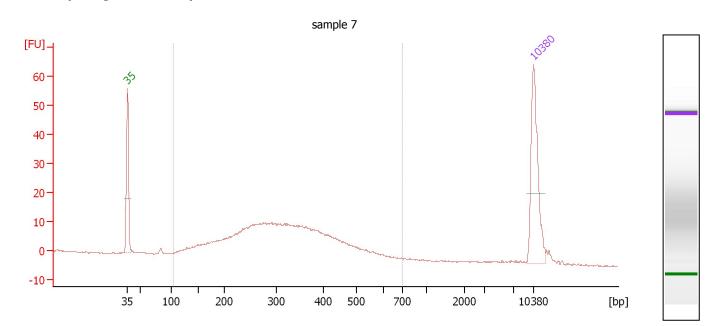
Electropherogram Summary Continued ...



Overall Results for sample	5 : <u>sample 5</u>		
Number of peaks found:	9	Corr. Area 1:	562.3
Noise:	0.1		

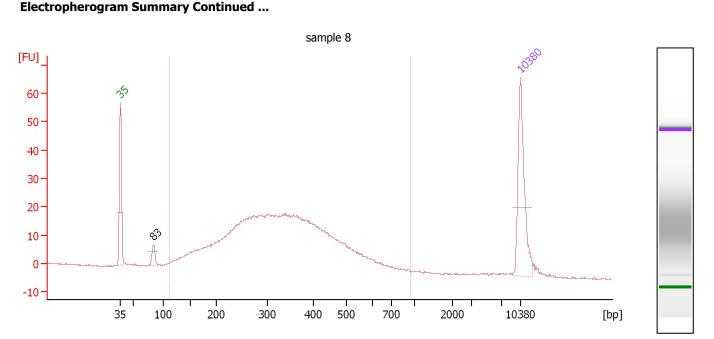
Peak t	able	for sample 5 :	sample 5				
Peak		Size [bp]	Conc. [pg/µl]	Molar	ity [pmol/l]	Ob	servations
1		35	125.00	5,411.	3	Lo	wer Marker
2		254	75.08	448.7			
3		275	28.28	155.8			
4		284	23.63	125.9			
5		315	15.57	74.8			
6		338	19.46	87.1			
7		343	20.25	89.4			
8		355	17.18	73.3			
9		383	14.79	58.6			
10		496	6.17	18.8			
11		10,380	75.00	10.9		Up	per Marker
Region table for sample 5 : <u>sample 5</u>							
From [bp] 111		o [bp] Average S [bp] 28 334	ize Molarity [pmol/l] 4,293.4	Conc. [pg/µl] 791.49	Co Corr. lor Area	% of Total 97	Size distribution in CV [%] 32.9

Created: Modified:


Assay Class: High Sensitivity DNA Assay Data Path: C:\... bioanalyzer\2100 expert\Data\2014-05-22\2014-05-22_001.xad

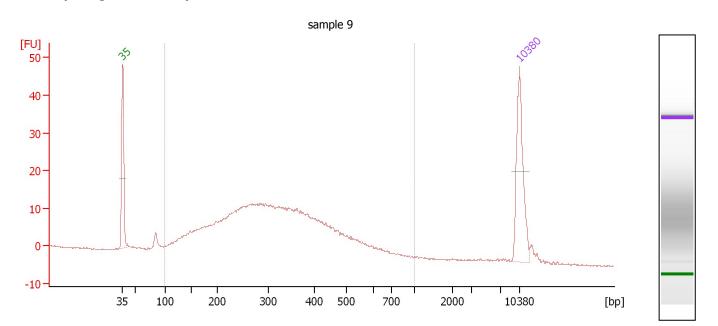
Overall Results for sample 6 : <u>sample 6</u>									
Number of peaks found:			Corr. Area 1:		390.4				
Noise:		0.1							
Peak table for sample 6 : <u>sample 6</u> Peak Size [bp] Conc. [pg/u]] Molarity [pmol/l] Observations									
	••			, , .					
4 35	12	25.00	5,411.3	3	Lov	ver Marker			
10,380	75	5.00	10.9		Upp	per Marker			
Region table for sample 6 : <u>sample 6</u>									
	bp]	Molarity [pmol/l] 4,246,7	Conc. [pg/µl] 763.38	Co Corr. lor Area	% of Total 97	Size distribution in CV [%] 32.7			
	ble for san Size [I 35 10,380 table for s To [bp] A	of peaks found: 0 0. ble for sample 6 : Size [bp] Ca 35 12 10,380 75 table for sample 6 : To [bp] Average Size [bp]	of peaks found: 0 0.1 ble for sample 6 : <u>sample 6</u> Size [bp] Conc. [pg/µl]	of peaks found: 0 Corr. A 0.1 ble for sample 6 : <u>sample 6</u> Size [bp] Conc. [pg/µl] Molari ▲ 35 125.00 5,411.3 ▶ 10,380 75.00 10.9 table for sample 6 : <u>sample 6</u> To [bp] Average Size Molarity Conc. [bp] [pmol/l] [pg/µl]	of peaks found: 0 Corr. Area 1: 0.1 ble for sample 6 : <u>sample 6</u> Size [bp] Conc. [pg/µl] Molarity [pmol/l] ▲ 35 125.00 5,411.3 10,380 75.00 10.9 table for sample 6 : <u>sample 6</u> To [bp] Average Size Molarity [pmol/l] Conc. Co Corr. [bp] [pmol/l] Conc. Ipg/µl] Cor Area	of peaks found: 0 Corr. Area 1: 3 0.1 ble for sample 6 : <u>sample 6</u> Size [bp] Conc. [pg/µl] Molarity [pmol/l] Ob 35 125.00 5,411.3 Lov 10,380 75.00 10.9 Upµ table for sample 6 : <u>sample 6</u> To [bp] Average Size Molarity Conc. Co Corr. % of [bp] [pmol/l] [pg/µl] lor Area Total			

Created: Modified:

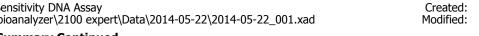

Assay Class: High Sensitivity DNA Assay Data Path: C:\... bioanalyzer\2100 expert\Data\2014-05-22\2014-05-22_001.xad

Overal	l Res	sults for samp	ole 7: <u>sample</u>	7			
Number	Number of peaks found:		0	0 Corr. Area 1:		359.6	
Noise:	Noise:		0.2				
Peak t	able	for sample 7	: <u>sample 7</u>				
Peak		Size [bp]	Conc. [pg/µl]	Mola	rity [pmol/l]	OI	bservations
1		35	125.00	5,411	.3	Lo	wer Marker
2		10,380	75.00	10.9		Upper Marker	
Regior	ı tab	le for sample	7 : <u>sample 7</u>	2			
From [bp] 104	T 0	[bp] Average [bp] 8 324	Size Molarity [pmol/l] 2,883.4	Conc. [pg/µl] 517.12	Co Corr. lor Area	% of Total 96	Size distribution in CV [%] 32.4

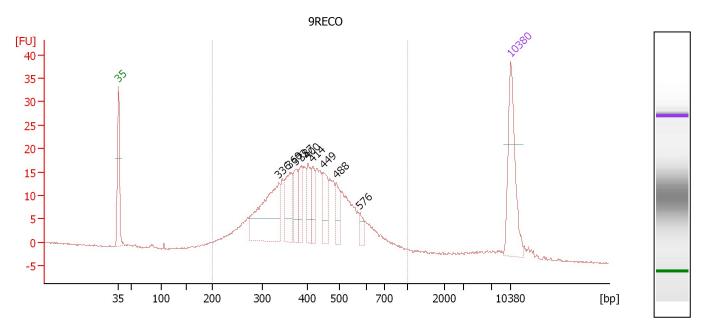
Created: Modified:


High Sensitivity DNA Assay C:\... bioanalyzer\2100 expert\Data\2014-05-22\2014-05-22_001.xad Assay Class: Data Path:

Overall Results for sample 8 : <u>sample 8</u>								
Numbe	r of p	eaks found:	1	Corr.	Area 1:	6	647.5	
Noise:	oise:		0.2					
Peak t	table	for sample 8	: sample 8					
Peak		Size [bp]	Conc. [pg/µl]	Mola	rity [pmol/l]	Ol	oservations	
1		35	125.00	5,411	.3	Lo	wer Marker	
2		83	19.54	357.4				
3		10,380	75.00	10.9		Upper Marker		
Region table for sample 8 : <u>sample 8</u>								
From [bp]		o [bp] Average [bp]	[pmol/l]	Conc. [pg/µl]	Co Corr. lor Area	% of Total	Size distribution in CV [%]	
110	9	51 344	5,173.2	965.00	647.5	95	35.8	


Created: Modified:

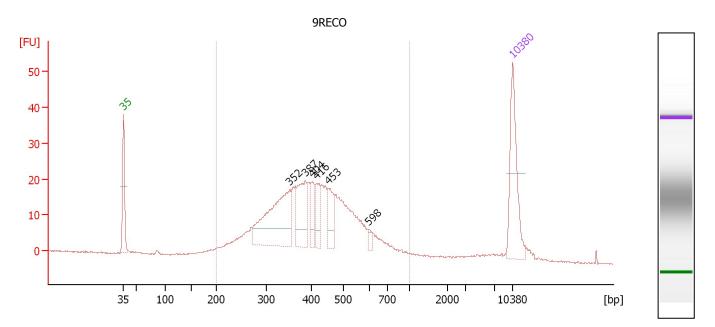
Assay Class: High Sensitivity DNA Assay Data Path: C:\... bioanalyzer\2100 expert\Data\2014-05-22\2014-05-22_001.xad


Overal	l Re	sults for sample	le 9 : <u>sample 9</u>	9				
Number	Number of peaks found:		0	Corr.	Corr. Area 1:		162.1	
Noise:	Noise:		0.2					
Peak t	able	for sample 9 :	: <u>sample 9</u>					
Peak		Size [bp]	Conc. [pg/µl]	Mola	rity [pmol/l]	Ob	oservations	
1		35	125.00	5,411	.3	Lo	wer Marker	
2		10,380	75.00	10.9		Up	per Marker	
Regior	Region table for sample 9 : <u>sample 9</u>							
From [bp]	Т	o [bp] Average \$ [bp]	Size Molarity [pmol/l]	Conc. [pg/µl]	Co Corr. lor Area	% of Total	Size distribution in CV [%]	
97	1,	,000 330	5,392.7	927.67	462.1	94	39.4	

High Sensitivity DNA Assay C:\... bioanalyzer\2100 expert\Data\2014-05-22\2014-05-22_001.xad Assay Class: Data Path:

5/22/2014 1:32:27 PM 5/22/2014 2:13:50 PM

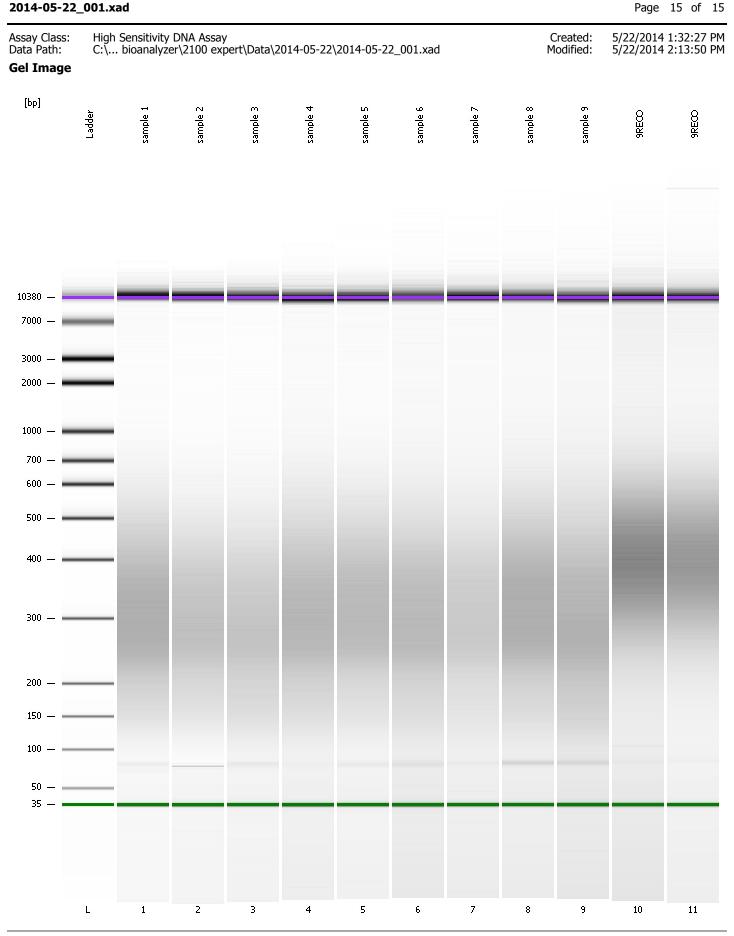
Electropherogram Summary Continued ...


Overall Results for sample 10 : 9RECO

Number of peaks found:	9	Corr. Area 1:	432.8
Noise:	0.2		

Peak ta	able	for sample 10	: <u>9RECO</u>				
Peak		Size [bp]	Conc. [pg/µl]	Molar	ity [pmol/l]	Ob	servations
1	-	35	125.00	5,411.	3	Lov	wer Marker
2		336	145.82	657.5			
3		360	59.09	248.5			
4		373	38.09	154.9			
5		387	32.54	127.5			
6		400	37.81	143.1			
7		414	27.17	99.3			
8		449	39.88	134.7			
9		488	26.70	82.8			
10		576	11.80	31.0			
11		10,380	75.00	10.9		Up	per Marker
Region table for sample 10 : <u>9RECO</u>							
From [bp] 200		o [bp] Average S [bp] ,000 423	ize Molarity [pmol/l] 3,594.5	Conc. [pg/µl] 898.59	Co Corr. lor Area 432.8	% of Total 94	Size distribution in CV [%] 29.0
200	т,	,000 725	5,594.5	090.39		FC	23.0

Created: Modified:


Assay Class: High Sensitivity DNA Assay Data Path: C:\... bioanalyzer\2100 expert\Data\2014-05-22\2014-05-22_001.xad

Overall Results for sample 11 : <u>9RECO</u>	
--	--

Number of peaks found:	6	Corr. Area 1:	500.6
Noise:	0.1		

Peak table for sample 11 : <u>9RECO</u>								
Peak		Size [bp]	Conc. [pg/µl]	Molar	ity [pmol/l]	Ol	oservations	
1		35	125.00	5,411.	3	Lo	wer Marker	
2		352	166.37	716.1				
3		387	77.80	304.6				
4		404	28.24	106.0				
5		416	34.36	125.1				
6		453	39.06	130.7				
7		598	7.75	19.6				
8		10,380	75.00	10.9		Up	oper Marker	
Region table for sample 11 : <u>9RECO</u>								
From [bp]		o [bp] Average S [bp]	[pmol/ĺ]	Conc. [pg/µl]	Co Corr. lor Area	% of Total	Size distribution in CV [%]	
200	1,	,000 422	3,310.9	825.12	500.6	92	29.4	

